ican
Giải SGK Toán 10
Bài 4: Bất phương trình bậc nhất hai ẩn

Bất phương trình bậc nhất hai ẩn

Giải bài tập sách giáo khoa bất phương trình bậc nhất hai ẩn toán học 10, toán 10 đại số lý thuyết trọng tâm giúp học sinh nắm vững kiến thức nhanh nhất

Ican

BÀI 4: BẤT PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN

I. LÝ THUYẾT TRỌNG TÂM

1. Biểu diễn hình học tập nghiệm của bất phương trình

ax+byc (1)

Trong đó a và b là hai số không đồng thời bằng 0.

Bước 1. Trên mặt phẳng tọa độ Oxy, vẽ đường thẳng (Δ):ax+by=c. 

Bước 2. Lấy một điểm M0(x0;y0)(Δ) (ta thường lấy gốc tọa độ O).

Bước 3. Tính ax0+by0 và so sánh ax0+by0 với c.

Bước 4. Kết luận

Nếu ax0+by0thìnamtphngb\[(Δ) chứa M0 là miền nghiệm của ax+byc .

Nếu ax0+by0>c thì nửa mặt phẳng bờ (Δ) không chứa M0 là miền nghiệm của ax+byc .

2. Bỏ bờ miền nghiệm của bất phương trình (1) ta được miền nghiệm của bất phương trình ax+by

Miền nghiệm của các bất phương trình ax+bycax+by>c được xác định tương tự.

3. Biểu diễn tập nghiệm của hệ bất phương trình bậc nhất hai ẩn

.{ax+bycax+byc

Vẽ các đường thẳng (Δ):ax+by=c(Δ):ax+by=c .

Biểu diễn miền nghiệm của mỗi bất phương trình và tìm giao của chúng.

4. Tìm giá trị lớn nhất, giá trị nhỏ nhất của các biểu thức dạng F=ax+by, trong đó x và y nghiệm đúng một hệ bất phương trình bậc nhất hai ẩn đã cho. Vẽ miền nghiệm của hệ BPT đã cho.

Miền nghiệm nhận được thường là một miền đa giác. Tính giá trị của F ứng với (x; y) là tọa độ các đỉnh của miền đa giác này rồi so sánh các kết quả từ đó suy ra giá trị lớn nhất và giá trị nhỏ nhất của biểu thức.

II. PHƯƠNG PHÁP GIẢI BÀI TẬP

Dạng 1. Biểu diễn hình học tập nghiệm của bất phương trình.

Phương pháp:

Giả sử có BPT : ax+byc (1)

Trong đó a và b là hai số không đồng thời bằng 0.

Bước 1. Trên mặt phẳng tọa độ Oxy, vẽ đường thẳng (Δ):ax+by=c. 

Bước 2. Lấy một điểm M0(x0;y0)(Δ) (ta thường lấy gốc tọa độ O).

Bước 3. Tính ax0+by0 và so sánh ax0+by0 với c.

Bước 4. Kết luận

Nếu ax0+by0thìnamtphngb\[(Δ) chứa M0 là miền nghiệm của ax+byc .

Nếu ax0+by0>c thì nửa mặt phẳng bờ (Δ) không chứa M0 là miền nghiệm của ax+byc .

Dạng 2. Biểu diễn hình học tập nghiệm của hệ bất phương trình.

Phương pháp:

Xét BPT

{ax+bycax+byc

Vẽ các đường thẳng (Δ):ax+by=c(Δ):ax+by=c .

Biểu diễn miền nghiệm của mỗi bất phương trình và tìm giao của chúng.

III. GIẢI BÀI TẬP SÁCH GIÁO KHOA

Bài 1/Tr99.

Biểu diễn tập nghiệm của các bất phương trình bậc nhất hai ẩn sau.

a) x+2+2(y2)<2(1x) 

b) 3(x1)+4(y2)<5x3 .

Giải

a) x+2+2(y2)<2(1x) 2y+x<4 .

Tập nghiệm của bất phương trình đã cho là nửa mặt phẳng (không kể bờ) được tô màu.

b) 3(x – 1) + 4(y – 2) < 5x – 3 ⇔ -x + 2y < 4.

Tập nghiệm của bất phương trình đã cho là nửa mặt phẳng (không kể bờ) được tô màu.

 

Bài 2/Tr 99.

Miền nghiệm của hệ bất phương trình {x2y<0x+3y>2yx<3 là phần mặt phẳng ( không kể bờ) được tô màu dưới đây.

b) Miền nghiệm của hệ bất phương trình

{x3+y21<0x+123y22{x3+y2<1x3y232x0

là phần mặt phẳng ( bỏ một bờ là đường thẳng x3+y2=1 ) được tô màu dưới đây.

Bài 3/Tr 99.

Gọi xí nghiệp sản xuất x sản phẩm 1 và y sản phẩm II (x, y ≥ 0), như vậy tổng số tiền lãi thu được là L = 3x + 5y (nghìn đồng). Theo bài ra ta có: nhóm A cần 2x + 2y máy, nhóm B cần 0x + 2y máy, 2x + 4y máy. Vậy, ta có hệ bất phương trình:{x3+y21<0x+123y22{x3+y2<1x3y232x0

Miền nghiệm của hệ bất phương trình là miền đa giác ABCOD với A(4;1); B(2;2); C(0;2); 0(0;0); D(5;0) (hình vẽ). L đạt max tại một trong các đỉnh nảy:

Ta có bảng

(x;y)(2;2)(0;2)(0;0)(4;1)(5;1)
L=3x+5y161001715

 

Dựa vào bảng ta thấy: maxL = 17 đạt khi x = 4; y = 1.

Vậy, để việc sản xuất hai loại sản phẩm trên có lãi cao nhất, doanh nghiệp cần sản xuất 4 sản phẩm I là 1 sản phẩm II.

 

Gợi ý Giải bài tập sách giáo khoa bất phương trình bậc nhất hai ẩn toán học 10, toán 10 đại số lý thuyết trọng tâm giúp học sinh nắm vững kiến thức nhanh nhất

Đánh giá (379)
ican
  • Một thương hiệu của 
    ICAN
  • ICAN
  • ICAN © 2023, All Rights Reserved.

  • Trụ sở Hồ Chí Minh: B0003 C/C Sarina, Khu đô thị Sala, Khu phố 3, Đường Hoàng Thế Thiện, Phường An Lợi Đông, TP. Thủ Đức

  • Văn phòng Hà Nội: Tòa nhà 25T2 Đường Hoàng Đạo Thúy, Phường Trung Hòa, Quận Cầu Giấy