ican
Vật lý 10
Bài 15: Bài toán về chuyển động ném ngang

BÀI TOÁN VỀ CHUYỂN ĐỘNG NÉM NGANG

Vật Lý 10 bài Bài toán về chuyển động ném ngang: Lý thuyết trọng tâm, giải bài tập sách giáo khoa Bài toán về chuyển động ném ngang: giúp học sinh nắm vững kiến thức ngắn gọn.

Ican

BÀI 15. BÀI TOÁN VỀ CHUYỂN ĐỘNG NÉM NGANG

A. LÍ THUYẾT TRỌNG TÂM

1. Khảo sát chuyển động ném ngang

+ Ném một vật M từ điểm O ở độ cao h so với mặt đất với vận tốc ban đầu \({{\vec{v}}_{0}}\) theo phương ngang. Bỏ qua sức cản của không khí, vật chỉ chịu tác dụng của trọng lực.

+ Chọn hệ tọa độ Đề-các có gốc tại O, trục hoành Ox hướng theo vectơ vận tốc \({{\vec{v}}_{0}}\), trục tung Oy hướng theo vectơ trọng lực \( \vec{P}.\)

+ Phân tích chuyển động của vật trên các trục Ox và Oy ta thu được các kết quả sau:

  • Theo trục Ox: M chuyển động thẳng đều. Các phương trình của chuyển động thành phần theo trục Ox của Mx là: ax = 0; vx = v0; x = v0.t
  • Theo trục Oy: M chuyển động như một vật rơi tự do. Các phương trình của chuyển động thành phần theo trục Oy của My là ay = g; vy = gt; \(y=\frac{1}{2}g{{t}^{2}}\)

2. Xác định chuyển động của vật

+ Dạng quỹ đạo:

  • Phương trình của đạo của vật: \(y=\frac{g}{2v_{0}^{2}}{{x}^{2}}\)
  • Quỹ đạo chuyển động là một nửa Parabol quay bề lõm xuống dưới.

+ Thời gian chuyển động: \(t=\sqrt{\frac{2h}{g}}\)

+ Tầm ném xa: \(L={{x}_{max}}={{v}_{0}}.t={{v}_{0}}\sqrt{\frac{2h}{g}}\)

+ Vận tốc tại thời điểm bất kì: \(v=\sqrt{v_{x}^{2}+v_{y}^{2}}=\sqrt{v_{0}^{2}+{{\left( gt \right)}^{2}}} (4)\)

Vận tốc của vật khi chạm đất: \(v=\sqrt{v_{0}^{2}+2gh}   \)

+ Góc giữa \(\vec{v}\) và phương thẳng đứng: \(\tan \alpha =\frac{{{v}_{x}}}{{{v}_{y}}}=\frac{{{v}_{0}}}{gt}\)

C. GIẢI BÀI TẬP SÁCH GIÁO KHOA

Câu C1 (trang 86 SGK Vật Lí 10) :

Hãy áp dụng định luật II Niu-tơn theo mỗi trục tọa độ để tìm các gia tốc ax, ay của hai chuyển động thành phần. Kết hợp với điều kiện ban đầu về vận tốc (v0x, v0y), hãy xác định tính chất của mỗi chuyển động thành phần.

Trả lời:

+ Theo phương Ox: hợp lực tác dụng lên vật bằng 0. Theo định luật II Niutơn ta có:

Fx = 0 ⇒ max = 0 ⇒ ax = 0 ⇒ vật chuyển động thẳng đều với v0x = v0.

+ Theo phương Oy: vật chỉ chịu tác dụng của trọng lực \(\vec{P}\). Theo định luật II Niutơn ta có:

Fy = P ⇒ may = mg ⇒ ay = g ⇒ vật chuyển động rơi tự do với với v0y = 0.

Câu C2 (trang 87 SGK Vật Lí 10) :

Một vật được ném ngang ở độ cao h = 80 m với vận tốc ban đầu v0 = 20 m/s. Lấy g = 10 m/s2.

a) Tính thời gian chuyển động và tầm bay xa của vật.

b) Lập phương trình quỹ đạo của vật.

Trả lời:

a) Thời gian vật chuyển động bằng thời gian vật rơi theo theo phương thẳng đứng nên ta có:

\(t=\sqrt{\frac{2h}{g}}=\sqrt{\frac{2.80}{10}}=4\,s.\)

Tầm bay xa của vật bằng quãng đường vật chuyển động đều theo phương ngang trong thời gian t:

L = v0t = 20.4 = 80 m.

b) Phương trình quỹ đạo của vật là: \(y=\frac{g}{2v_{0}^{2}}{{x}^{2}}=\frac{10}{{{2.20}^{2}}}{{x}^{2}}=\frac{1}{80}{{x}^{2}}.\)

Câu C3 (trang 87 SGK Vật Lí 10) :

Thí nghiệm trên đã xác nhận điều gì?

Trả lời:

Thí nghiệm xác nhận phương pháp phân tích chuyển động ném ngang như trong bài học là đúng. Thí nghiệm còn xác nhận rằng thời gian vật rơi chỉ phụ thuộc độ cao rơi mà không phụ thuộc vận tốc \({{\vec{v}}_{0}}\) theo đúng công thức \(t=\sqrt{\frac{2h}{g}}\)

D. CÂU HỎI – BÀI TẬP

Bài 1 (trang 888 SGK Vật Lí 10) :

Để khảo sát chuyển động ném ngang, ta chọn hệ tọa độ Đề-các như thế nào là thích hợp nhất? Nêu cách phân tích chuyển động ném ngang thành hai chuyển động thành phần theo hai trục của hệ tọa độ đó.

Lời giải:

+ Chọn hệ tọa độ Đề-các có gốc tại O, trục hoành Ox hướng theo vectơ vận tốc \({{\vec{v}}_{0}}\), trục tung Oy hướng theo vectơ trọng lực \(\vec{P}.\)

+ Khi vật M chuyển động thì các hình chiếu Mx và My của nó trên hai trục tọa độ cũng chuyển động theo. Chuyển động của các hình chiều Mx và My gọi là các chuyển động thành phần của vật M. Như vậy ta đã phân tích chuyển động ném ngang thành hai chuyển động thành phần trên hai trục tọa độ Ox và Oy.

Bài 2 (trang 88 SGK Vật Lí 10) :

Viết các chương trình của hai chuyển động thành phần của chuyển động ném ngang và cho biết tính chất của mỗi chuyển động thành phần.

Lời giải:

  • Theo trục Ox, Theo trục Ox: M chuyển động thẳng đều. Các phương trình của chuyển động thành phần theo trục Ox của Mx là: \(\left\{ \begin{align}   & {{a}_{x}}=0 \\  & {{v}_{x}}={{v}_{0}} \\  & x={{v}_{0}}.t \\ \end{align} \right.\)
  • Theo trục Oy: M chuyển động như một vật rơi tự do. Các phương trình của chuyển động thành phần theo trục Oy của My là: \(\left\{ \begin{align}   & {{a}_{y}}=g \\  & {{v}_{y}}=gt \\  & y=\frac{1}{2}g{{t}^{2}} \\ \end{align} \right.\)

Bài 3 (trang 88 SGK Vật Lí 10) :

Lập phương trình quỹ đạo của chuyển động ném ngang, các công thức tính thời gian chuyển động và tầm ném xa.

Lời giải:

+ Từ phương trình chuyển động của vật theo hai trục Ox và Oy ta có:

\(x={{v}_{0}}.t\Rightarrow t=\frac{x}{{{v}_{0}}}\Rightarrow y=\frac{1}{2}g{{t}^{2}}=\frac{1}{2}g{{\left( \frac{x}{{{v}_{0}}} \right)}^{2}}=\frac{g}{2v_{0}^{2}}{{x}^{2}}\)

+ Theo trục Oy, vật chuyển động rơi tự do với phương trình \(y=\frac{1}{2}g{{t}^{2}}\)

Khi vật chạm đất ta có: \(y = h \Rightarrow y=\frac{1}{2}g{{t}^{2}}=h\Rightarrow t=\sqrt{\frac{2h}{g}}\)

+ Tầm bay xa của vật bằng quãng đường vật chuyển động đều theo phương ngang trong thời gian t:

\(L={{v}_{0}}t={{v}_{0}}\sqrt{\frac{2h}{g}}\)

Bài 4 (trang 88 SGK Vật Lí 10) :

Bi A có khối lượng lớn gấp đôi bi B. Cùng một lúc tại mái nhà, bi A được thả rơi còn bi B được ném theo phương ngang. Bỏ qua sức cản của không khí.

Hãy cho biết câu nào dưới đây là câu đúng?

A. A chạm đất trước. B. A chạm đất sau.

C. Cả hai chạm đất cùng lúc. D. Chưa đủ thông tin để trả lời.

Lời giải: Chọn C.

Cả hai chạm đất cùng lúc vì thời gian rơi của vật ném ngang và vật rơi tự do từ cùng một độ cao là như nhau. Đồng thời thời gian rơi tự do không phụ thuộc khối lượng của vật.

Bài 5 (trang 88 SGK Vật Lí 10) :

Một máy bay bay theo phương ngang ở độ cao 10 km với tốc độ 720 km/h . Viên phi công phải thả bom từ xa cách mục tiêu (theo phương ngang) bao nhiêu để quả bom rơi trúng mục tiêu? Lấy g = 10 m/s2. Vẽ một cách gần đúng dạng quỹ đạo của quả bom.

Lời giải:

v0 = 720 km/h = 200 m/s, h = 10 km = 10000 m.

Áp dụng công thức tầm ném xa ta có: \(L={{v}_{0}}\sqrt{\frac{2h}{g}}=200.\sqrt{\frac{2.10000}{10}}\approx 8944\,m=8,944\,km.\)

Vẽ một cách gần đúng dạng quỹ đạo của quả bom.

Bài 6 (trang 88 SGK Vật Lí 10) :

Một hòn bi lăn dọc theo một cạnh của một mặt bàn hình chữ nhật nằm ngang cao h = 1,25 m. Khi ra khỏi mép bàn, nó rơi xuống nền nhà tại điểm cách mép bàn L = 1,50 m (theo phương ngang)? Lấy g = 10 m/s2. Thời gian rơi của hòn bi là

A. 0,35 s. B. 0,125 s. C. 0,5 s. D. 0,25 s.

Lời giải: Chọn C.

Chuyển động của bi rời khỏi mặt bàn coi như là chuyển động ném ngang với độ cao ban đầu h = 1,25 m và có tầm ném xa là L = 1,50 m.

Thời gian rơi của hòn bi là: \(t=\sqrt{\frac{2h}{g}}\,=\sqrt{\frac{2.1,25}{10}}=0,5\,s.\)

Bài 7 (trang 88 SGK Vật Lí 10) :

Với số liệu của bài 6, hỏi tốc độ của viên bi lúc rời khỏi bàn?

A. 4,28 m/s. B. 3 m/s. C. 12 m/s. D. 6 m/s.

Lời giải: Chọn B.

Áp dụng công thức tầm ném xa, ta có tốc độ của viên bi lức rời khỏi bàn là:

\({{v}_{0}}=\frac{L}{t}=\frac{1,5}{0,5}=3\,m/s.\)

 

Trên đây là gợi ý giải bài tập Vật Lý 10 bài Bài toán về chuyển động ném ngang do giáo viên Ican trực tiếp biên soạn theo chương trình mới nhất. Chúc các bạn học tập vui vẻ.

 

Đánh giá (478)
ican
  • Một thương hiệu của 
    ICAN
  • ICAN
  • ICAN © 2023, All Rights Reserved.

  • Trụ sở Hồ Chí Minh: B0003 C/C Sarina, Khu đô thị Sala, Khu phố 3, Đường Hoàng Thế Thiện, Phường An Lợi Đông, TP. Thủ Đức

  • Văn phòng Hà Nội: Tòa nhà 25T2 Đường Hoàng Đạo Thúy, Phường Trung Hòa, Quận Cầu Giấy